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ScienceDirect
Methanogenesis is a widespread metabolism of evolutionary

and environmental importance that is likely to have originated

on early Earth. Microorganisms that perform methanogenesis,

termed methanogens, belong exclusively to the domain

Archaea. Despite maintaining eukaryotic transcription

machinery and homologs of bacterial regulators, archaeal

transcription and gene regulation appear to be distinct from

either domain. While genes involved in methanogenic

metabolism have been identified and characterized, their

regulation in response to both extracellular and intracellular

signals is less understood. Here, we review recent reports on

transcriptional regulation of methanogenesis using two model

methanogens, Methanococcus maripaludis and

Methanosarcina acetivorans, and highlight directions for future

research in this nascent field.
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Introduction
Methanogens are a polyphyletic group of archaea that

couple growth and energy conservation to the generation

of methane gas through a process called methanogenesis

[1–3]. These microbes are typically found in anoxic envir-

onments such as wetlands and sewage treatment plants, as

well as the digestive tract of diverse hosts like termites,

cows, and humans [4]. As the predominant source of

methane, a potent greenhouse gas, methanogenic archaea

rank asa highly influentialgroup oforganisms in thecontext

of global climate regulation [1,5–7]. By now, many of the

enzymes and respiratory complexes involved in methano-

genesis have been identified and characterized in intricate

biochemical detail [1,3]. Yet, very little is known about how
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these genes are regulated in response to biotic or abiotic

signals. As the climate crisis exacerbates, the need to

understand how methanogens regulate their metabolism

in response to environmental cues is crucial to forecast how

they will adapt to and impact the warming planet.

Since all known methanogens are members of the Archaea,

the third domain of Life, their transcriptional machinery

contains elements related to that of Bacteria and Eukarya,

while remaining distinct from either (Figure 1) [8,9]. For

instance, the archaeal RNA polymerase (RNAP) is struc-

turally and evolutionarily related to PolII in Saccharomyces
cerevisiae (Figure 1c) [10]. Similarly, transcription initiation

relies on homologs of eukaryotic TATA-binding proteins

(TBPs) and transcription factor B (TFB) binding to the

TATA box and B-recognition element in the core promoter

sequence, respectively (Figure 1a) [11,12]. However, fol-

lowing coordination of RNAP with the promoter, elonga-

tion proceeds akin to Bacteria, with transcription of the

nascent mRNA coupled directly to its translation

(Figure 1b) [13]. This is particularly relevant within the

context of polarity as archaeal genomes are generally orga-

nized in operons [8]. Although homologs of the canonical,

bacterial two component system (TCS) and some eukary-

otic transcription factors have been identified in methano-

gens, the fundamental mechanisms of signal transduction

and gene regulation in archaea are distinct and largely

uncharacterized in vivo [14,15,16�]. However, with the

advent of new genetic techniques, these questions are

becoming more feasible to address within the context of

the cell.

This review summarizes current knowledge and identifies

future directions for research related to the regulation of

methanogenesis in Methanoccocus maripaludis and Methano-
sarcina acetivorans. These well-studied species have

emerged as genetically tractable model organisms that

represent two distinct energy conservation strategies in

methanogens. M. maripaludis lacks cytochromes and is

restricted to growth on H2 + CO2 or formate [17]; whereas

M. acetivorans contains cytochromes and has a broader

substrate range, which can include acetate and methylated

compounds like methanol or methylamines [18]. Together,

these two species provide an ideal genetic framework to

identify signaling cascades and transcription factors that

regulate methanogenesis in vivo.

Methanogens without cytochromes
Methanogens belonging to the Orders Methanococcales,
Methanobacteriales, Methanomicrobiales, and Methanopyrales
www.sciencedirect.com
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Figure 1
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Transcription in Methanogenic Archaea. (a) Two transcription factors, TBP (TATA binding protein; in orange) and TFB (transcription factor B; in

orange-red), that bind to the TATA-box and the B-recognition element (BRE) in the promoter region respectively are required to recruit the RNA

polymerase (in light blue) for transcription initiation in methanogenic archaea. A third transcription factor, Transcription factor E (TFE; in yellow) is

not essential but enhances the recruitment of RNA polymerase in vitro. The 50 untranslated region (UTR) is highlighted in blue. (b) Genes in

methanogenic archaea are arranged in operons and transcription of a multi-gene operon (in green) produces polycistronic RNA. Assembly of the

corresponding polypeptide is facilitated by a translating ribosome (light purple). (c) Structural overview of RNA polymerase (RNAP) derived from a

bacterium (Escherichia coli; PDB ID: 4YG2), an archaeon (Thermococcus kodakarensis PDB ID: 4QIW) and a eukaryote (Polymerase II from

Saccharomyces cerevisiae PDB ID: 1WCM). Orthologous subunits of RNAP are shown using the same color.
withintheEuryarchaeota, lackcytochromesanddiffer in their

energy metabolism from members of Methanosarcinales. The

vast majority of these cytochrome-lacking methanogens are

restricted to growth on CO2 with H2 or formate as the

electron donor [1,4]. However, a few notable exceptions

can use methylated compounds as a carbon source and short-
www.sciencedirect.com 
chain alcohols, like ethanol, as an electron donoras discussed

in [2,19,20]. Although methanogens with and without cyto-

chromes share a conserved seven-step pathway for the step-

wise reduction of CO2 to methane, the two differ signifi-

cantly in their energy conservation strategies [1]. Methano-

gens without cytochromes, like M. maripaludis, also lack the
Current Opinion in Microbiology 2021, 60:8–15
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Figure 2
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Condition Specific Regulation of Methanogenesis in Methanococcus maripaludis. Steps highlighted with colored arrows denote upregulation of the

corresponding enzyme based on substrate availability. (a) Transcriptomic analyses of methanogenesis in H2-replete and H2-limited conditions has

shown that genes catalyzing the fourth and the fifth step in the sequential reduction of CO2 to methane are transcriptionally regulated as a

function of H2 availability. Additionally, the F420-reducing hydrogenase complex (Fru) and formate dehydrogenase (Fdh1) are upregulated upon H2

limitation. (b) During growth on formate, three steps of the seven-step pathway for CO2 reduction are regulated as a function of substrate

concentration. In addition, the two formate dehydrogenase orthologs are differently expressed: Fdh1 is expressed in formate replete media

whereas Fdh2 is only expressed when formate concentrations are growth limiting.
quinone-like compound methanophenazine and rely on

flavin-based electron bifurcation (FBEB) for the regenera-

tion of coenzyme M (CoM) and coenzyme B (CoB) from the

oxidized heterodisulfide (CoM-CoB) produced during the

final step of methanogenesis [1,21–23]. As a result, the Na+-

dependent N5-methyl-tetrahydromethanopterin:CoM

methyltransferase (Mtr) singularly generates the ion gradi-

ent for ATP synthesis by the membrane-bound ATPase [1].

Until recently, M. maripaludis was the only genetically

tractable member of this group of methanogens [24,25].

While its nitrogen regulon has been characterized and

reviewed in detail in [26,27], regulation of methanogenesis

in M. maripaludis has only been inferred from genome-wide

transcriptomic data [28]. Therefore, despite extensive evi-

dence for the regulation of methanogenic enzymes (as

discussed below) transcriptional regulators involved in this

process are yet to be characterized.

H2 dependent gene regulation

Whole cell transcriptomic analyses of M. maripaludis in

chemostat cultures where growth was limited by H2
Current Opinion in Microbiology 2021, 60:8–15 
revealed extensive regulation in core methanogenesis

genes [28–30]. Significantly, expression of metabolic genes

that use F420, an NAD(P) analog used by methanogens as a

redox carrier, is linked to extracellular H2 levels [29]. Two

enzymescancarryoutthefourthstepofthemethanogenesis

pathway: an F420-dependent tetrahydromethanopterin

dehydrogenase(Mtd)oraH2-dependent tetrahydrometha-

nopterin dehydrogenase (Hmd) (Figure 2a). As H2 levels

drop, transcripts for Mtd become more abundant relative to

Hmd, favoring the use of F420 as an intermediate under low

H2conditions(Figure2a) [30,31
��].Similarly, transcripts for

the F420-dependent methylene tetrahydromethanopterin

reductase(Mer)andF420-dependenthydrogenase(Fru)are

more abundant under H2-limiting conditions (Figure 2a)

[29]. This upregulation of genes encoding F420-dependent

enzymes under H2-limiting conditions might be beneficial

to sustain metabolic flux for methanogenesis fueled by

reduced F420 rather than H2 [17,23,31
��]. Similar studies

with other methanogens like Methanocaldococcus janaschii
and Methanothermobacter thermoautotrophicum DH, have also

revealed substantial transcriptional regulation of Mtd
www.sciencedirect.com
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versus Hmd—along with other methanogenic enzymes—

asa function ofH2availability [32,33].Altogether, while it is

clear that there is an extensive H2regulon in M.maripaludis,
a H2 sensor and its downstream signaling cascade remains

elusive.

Formate dependent gene regulation

In methanogens without cytochromes, formate dehydroge-

nase(encodedby fdhAB)catalyzestheoxidationofformateto

CO2 with the concomitant reduction of F420. M. maripaludis
encodes two copies of fdhAB where only fdh1 is essential for

growth on formate and the Dfdh2 mutant is indistinguishable

fromwildtype[31��,34].Wholecell transcriptomicsandgene

specific lacZ fusions have shown that fdh1 is upregulated

during H2 limitation and in the presence of formate, whereas

fdh2 is only upregulated under formate limiting conditions

(Figure2b)[34].Likewise,manycoremethanogenesisgenes

appear to be regulated in response to formate (Figure 2b)

[31��]. Whether the regulatory signals for formate and H2are

the same, somewhat overlapping, or completely distinct is

yet to be determined.

Methanogens with cytochromes
Members of the Order Methanosarcinales encode cyto-

chromes and a membrane bound electron transport chain

for energy conservation during methanogenesis [1,2,4].

These methanogens are metabolically diverse [4,35�],
providing a unique opportunity for the characterization

of genes involved in the substrate specific regulation of

methanogenesis. While many species within the Genus

Methanosarcina are genetically tractable [36,37], M. acet-
ivorans is emerging as a preeminent model system for

understanding gene regulation in methanogens and per-

haps, even more broadly, in the Archaea. Consequently,

M. acetivorans encodes the largest number of transcription

factors (TFs) in an archaeal genome [14] and substantial

work has been done to show that several members of the

ArsR family TFs act as both activators and repressors of

genes involved in methanogenic metabolism [38,39��].

Methylotrophic methanogenesis

During growth on methylatedcompounds, also referred to as

methylotrophic methanogenesis, 1/4th of the C1 substrate is

oxidized to CO2 via a reversal of six steps of the core

methanogenesis pathway and 3/4th is reduced to methane

using the enzyme methyl coenzyme reductase (Figure 3a)

[3,40]. During this process, the methyl group from the

substrate enters core methanogenesis at the level of

methyl-CoM via two stepwise methyl-transfer reactions

mediated by two different methyltransferases, referred to

as MT1 and MT2 (Figure 3a) [41]. The MT1 complex is

substrate-specific and consists of a methyltransferase that

transfers the methylgroup to its associatedcorrinoid contain-

ingprotein,whereasMT2catalyzesthetransferofthemethyl

group from the corrinoid protein to CoM to form methyl-

CoM (Figure 3a) [42–45]. For the purpose of this review, we
www.sciencedirect.com 
will focus only on the regulation of MT1 and MT2 during

methylotrophic methanogenesis.

Methanosarcina spp. often encode multiple copies of the

substrate-specific MT1 that are dynamically regulated

(Figure 3b) [18,46]. In M. acetivorans, the three copies of

methanol-specific MT1 operons, mtaCB1, mtaCB2, and

mtaCB3 are differentially regulated with respect to changes

in growth phase and substrate availability [38,39��]. Several

members of the ArsR family of TFs that are in the genomic

proximity of these operons have been designated as mem-

bers of the Msr (methanol specific regulator) family upon

functional characterization (Figure 3b) [39��]. Msr proteins

can both activate and repress the expression of mtaCB in M.
acetivorans. Mutational analyses coupled to transcriptional

fusions have revealed that MsrA and MsrB act as positive

regulators of mtaCB1 while MsrD and MsrE function in the

dual activation and repression of mtaCB2 and mtaCB3,
respectively (Figure 3b) [39��]. Thismodelof Msr-mediated

regulation can be extended to a class of fused MT1/MT2

proteins (MtsD, MtsF, MtsH) that are required for the

production of methylated sulfur compounds during growth

on carbon monoxide, or for growth on methylated sulfur

compounds [47,48]. Genetic studies have shown that MsrF,

MsrC, and MsrG are required for the transcriptional activa-

tion of MtsD, MtsF, and MtsH respectively (Figure 3b)

[49��]. While each of the Msr proteins contains a DNA-

binding domain, whether these proteins directly bind to

the promoter region of the corresponding MTs or interact

with other TFs to regulate transcription is unknown and

warrants further investigation [39��].

Recent work has identified two redox-active cytoplasmic

sensor kinases that are likely involved in the regulation of

MTs [50,51]. A methylsulfide-specific sensor, named

MsmS, is encoded directly upstream of the regulator

MsrG and undergoes autophosphorylation when the iron

in its covalently bound heme group is oxidized from Fe

(II) to Fe(III) (Figure 3b) [50]. Interestingly, a DmsmS
knockout constitutively produces MtsF, indicating that

MsmS may act as a negative effector of mtsF expression

[50]. Similarly, another sensor kinase, RdmS, is autopho-

sphorylated at a conserved tyrosine residue when intra-

molecular disulfide bonds between two cysteine residues

are formed under oxidizing conditions [51]. These sensor

kinases are promising models for understanding archaeal

two-component systems, but whether they interact with

Msr family regulators to fine-tune the expression of MTs

remains unclear.

Beyond transcription initiation, regulation of methylo-

trophic methanogenesis also occurs at the post-transcrip-

tional level. Curiously, when the mtaCBA genes are

expressed from a tetracycline-inducible PmcrB(tetO1) pro-

moter, RNA and protein levels can vary substantially

(>10 fold) depending on the growth conditions [52]. This

observation is supported by recent work identifying that
Current Opinion in Microbiology 2021, 60:8–15
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Figure 3
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Methylotrophic Methanogenesis in Methanosarcina acetivorans. (a) A substrate-specific methyltransferase (MtaB) catalyzes a methyl-transfer

reaction from methanol to a corrinoid-containing protein (MtaC). The heterodimer of MtaB and MtaC (in blue) is called the MTI. A second

methyltransferase (MtaA2; in yellow) catalyzes a methyl-transfer reaction from methyl-MtaC to form methyl-coenzyme M (CoM), which is

disproportionated in a 3:1 ratio to methane and CO2 using the conserved seven-step methanogenesis pathway. The MtaC corrinoid cofactor,

methylated 5-hydroxybenzimidazolylcobamide, is depicted in the inset above MT1. (b) Msr proteins regulate the expression of three different

MtaCB operons in M. acetivorans. The dashed arrow indicates that MsrC is a weak activator of MtaCB2 compared to MsrDE.
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global changes in mRNA half-life in M. acetivorans
depend on its growth conditions [53], in addition to work

characterizing small RNAs that regulate expression of

MTs in Methanosarcina mazei [54]. However, a model

describing the extent to which post-transcriptional regu-

lation fine tunes gene expression and cellular protein

levels has yet to be uncovered.

Acetoclastic methanogenesis

In Methanosarcina spp. growth on acetate proceeds

through the dismutation of acetate to CO2 and methane

using two dedicated enzymes: acetate kinase (Ack) and

phosphotransacetylase (Pta) [3,55]. First, acetate is acti-

vated to acetyl-CoA by Ack and Pta, after which it is split

into enzyme-bound methyl and CO groups by acetyl-CoA

decarbonylase/synthase (ACDS). The methyl group then

enters the central pathway as methyl-tetrahydrosarcinop-

terin (methyl-H4SPT), and the CO group is oxidized to

CO2 [3,55].

Mutational analyses coupled with RNA-seq have

revealed that a TrmB family regulator, named MreA,

plays a role in the dual activation and repression of

acetoclastic and methylotrophic methanogenesis, respec-

tively [56��]. RNA-seq analyses of the DmreA mutant

revealed wholesale downregulation of genes required

for acetoclastic methanogenesis with concurrent upregu-

lation of MTs and the Msr family regulatory proteins

involved in methylotrophic methanogenesis [56��]. Addi-

tionally, purified MreA has been shown to bind the

promoter region of pta and fpo (F420 dehydrogenase);

the former is essential to acetoclastic methanogenesis,

while the latter is a membrane bound energy conservation

complex upregulated during methylotrophic growth.

Taken with the observation of a substantial growth defect

in a DmreA mutant, these results indicate that MreA may

play a role in the global regulation of methanogenesis

[56��]. However, the underlying mechanism of MreA

mediated regulation is yet to be characterized.

Conclusions and future directions
Methanogenesis is a widespread, environmentally rele-

vant, and evolutionarily important metabolism. While

there is considerable phenomenological evidence of reg-

ulation in methanogens, a clear picture of transcriptional

and post-transcriptional regulatory processes in these

pivotal organisms has yet to emerge. The work outlined

in this review represents a foundation for future research

threads that will shed light on how methanogens sense

their environment and tune their metabolism in response.

Recent methodological advances, such as genome-wide

functional screens coupled with high-throughput global

gene expression profiling, are likely to facilitate future

efforts to map the complex regulatory network in metha-

nogens. Furthermore, besides its myriad practical appli-

cations, studying the regulation of methanogenesis also
www.sciencedirect.com 
presents an opportunity to deepen our fundamental

understanding of gene regulation in the domain Archaea.
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